Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia.

نویسندگان

  • Marco Tartaglia
  • Simone Martinelli
  • Giovanni Cazzaniga
  • Viviana Cordeddu
  • Ivano Iavarone
  • Monica Spinelli
  • Chiara Palmi
  • Claudio Carta
  • Andrea Pession
  • Maurizio Aricò
  • Giuseppe Masera
  • Giuseppe Basso
  • Mariella Sorcini
  • Bruce D Gelb
  • Andrea Biondi
چکیده

SHP-2 is a protein tyrosine phosphatase functioning as signal transducer downstream to growth factor and cytokine receptors. SHP-2 is required during development, and germline mutations in PTPN11, the gene encoding SHP-2, cause Noonan syndrome. SHP-2 plays a crucial role in hematopoietic cell development. We recently demonstrated that somatic PTPN11 mutations are the most frequent lesion in juvenile myelomonocytic leukemia and are observed in a smaller percentage of children with other myeloid malignancies. Here, we report that PTPN11 lesions occur in childhood acute lymphoblastic leukemia (ALL). Mutations were observed in 23 of 317 B-cell precursor ALL cases, but not among 44 children with T-lineage ALL. In the former, lesions prevalently occurred in TEL-AML1(-) cases with CD19(+)/CD10(+)/cyIgM(-) immunophenotype. PTPN11, NRAS, and KRAS2 mutations were largely mutually exclusive and accounted for one third of common ALL cases. We also show that, among 69 children with acute myeloid leukemia, PTPN11 mutations occurred in 4 of 12 cases with acute monocytic leukemia (FAB-M5). Leukemia-associated PTPN11 mutations were missense and were predicted to result in SHP-2 gain-of-function. Our findings provide evidence for a wider role of PTPN11 lesions in leukemogenesis, but also suggest a lineage-related and differentiation stage-related contribution of these lesions to clonal expansion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection Of 11q23 Gene Rearrangement In Children With Acute Lymphoblastic Leukemia And Its Association With Demographic Data and Response To Initial Chemotherapy On The Seventh Day Of Induction

Background: Acute lymphoblastic leukemia (ALL) is the most common form of childhood cancer leading to cancer-related death in children. Most infants with ALL harbor recurring structural chromosomal rearrangements that are important initiating events in leukemogenesis but are insufficient to explain the biology and heterogeneity of the disease. Mixed-lineage leukemia-rearrangement (MLL-rearrange...

متن کامل

Cytogenetic and FMS-Like Tyrosine Kinase 3 Mutation Analyses in Acute Promyelocytic Leukemia Patients

Background: The secondary genetic changes other than the promyelocytic leukemia-retinoic acid receptor (PML-RARA) fusion gene may contribute to the acute promyelocytic leukemogenesis. Chromosomal alterations and mutation of FLT3 (FMS-like tyrosine kinase 3) tyrosine kinase receptor are the frequent genetic alterations in acute myeloid leukemia. However, the prognostic significance of FLT3 mutat...

متن کامل

Lineage Switch in Childhood Leukemia: A Case Report and Review of Literature

Acute leukemia which is the most common cancer in children is a heterogeneous group of clonal malignancies. The conversion of the leukemic cell lineage during the course of the disease or later is termed lineage switch. It has been rarely reported in the literature. In leukemia lineage switch, conversions from lymphoblastic leukemia to myeloid leukemia or vice versa are reported. Herein, we rep...

متن کامل

Detection of R882 Mutations in DNMT3A Gene in Acute Myeloid Leukemia: A Method Comparison Study

Background: Somatic mutations in the hotspot region of the DNA-methyltransferase 3A (DNMT3A) gene were recurrently identified in acute myeloid leukemia (AML). It is believed that DNMT3A mutations confer an adverse prognosis for AML patients. These lines of evidence support the need for a rapid and cost-efficient method for the detection of these mutations. The present study aimed to establish h...

متن کامل

Non–lineage/stage-restricted effects of a gain-of-function mutation in tyrosine phosphatase Ptpn11 (Shp2) on malignant transformation of hematopoietic cells

Activating mutations in protein tyrosine phosphatase 11 (Ptpn11) have been identified in childhood acute leukemias, in addition to juvenile myelomonocytic leukemia (JMML), which is a myeloproliferative disorder (MPD). It is not clear whether activating mutations of this phosphatase play a causal role in the pathogenesis of acute leukemias. If so, the cell origin of leukemia-initiating stem cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 104 2  شماره 

صفحات  -

تاریخ انتشار 2004